首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70902篇
  免费   5259篇
  国内免费   2482篇
  2023年   1139篇
  2022年   1060篇
  2021年   2228篇
  2020年   2348篇
  2019年   3262篇
  2018年   2835篇
  2017年   2022篇
  2016年   2010篇
  2015年   2513篇
  2014年   4741篇
  2013年   5893篇
  2012年   3653篇
  2011年   4691篇
  2010年   3572篇
  2009年   3868篇
  2008年   3940篇
  2007年   3967篇
  2006年   3518篇
  2005年   3053篇
  2004年   2703篇
  2003年   2146篇
  2002年   1927篇
  2001年   1223篇
  2000年   937篇
  1999年   918篇
  1998年   855篇
  1997年   638篇
  1996年   586篇
  1995年   612篇
  1994年   565篇
  1993年   431篇
  1992年   431篇
  1991年   356篇
  1990年   293篇
  1989年   241篇
  1988年   211篇
  1987年   184篇
  1986年   161篇
  1985年   272篇
  1984年   455篇
  1983年   334篇
  1982年   347篇
  1981年   264篇
  1980年   201篇
  1979年   194篇
  1978年   172篇
  1977年   143篇
  1976年   115篇
  1975年   108篇
  1973年   104篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   
992.
993.
RuvB family of protein contains two similar kinds of proteins i.e. RuvB1 and RuvB2 from yeast to human. These proteins belong to the AAA + class of proteins and are critical components of several multiprotein complexes involved in diverse cellular activities. There are two RuvB proteins annotated in the Plasmodium database but the identification of the third protein recently by our lab has raised the question why Plasmodium falciparum contains three RuvB proteins instead of two. Hence the biochemical characterizations of these proteins have become essential to understand the role of these proteins in the malaria parasite. Recently we have reported the characterization of the recombinant PfRuvB3, which contains ATPase activity but lacks DNA helicase activity. In the present study we report the phylogenetic analysis and detailed biochemical characterization of one of the other RuvB homologue RuvB1 from P. falciparum. PfRuvB1 shows considerable homology with human as well as yeast RuvB1 and contains Walker motif A and Walker motif B. The activity analysis of this protein revealed that PfRuvB1 is an ATPase and this activity increased significantly in the presence of ss-DNA. PfRuvB1 also contains DNA helicase activity and translocates preferentially in 5′ to 3′ direction. In vivo investigation of PfRuvB1 revealed that it is constitutively expressed during all the stages of intraerythrocytic cycle of P. falciparum and localizes mainly to the nucleus. These studies will make important contribution in understanding the role of RuvB protein in P. falciparum.  相似文献   
994.
995.
Cilia in ciliated cells consist of protruding structures that sense mechanical and chemical signals from the extracellular environment. Cilia are assembled with variety molecules via a process known as intraflagellar transport (IFT). What controls the length of cilia in ciliated cells is critical to understand ciliary disease such as autosomal dominant polycystic kidney disease, which involves abnormally short cilia. But this control mechanism is not well understood. Previously, multiple tubular cysts have been observed in the kidneys of max-interacting protein 1 (Mxi1)-deficient mice aged 6 months or more. Here, we clarified the relationship between Mxi1 inactivation and cilia disassembly. Cilia phenotypes were observed in kidneys of Mxi1-deficient mice using scanning electron microscopy to elucidate the effect of Mxi1 on renal cilia phenotype, and cilia disassembly was observed in Mxi1-deficient kidney. In addition, genes related to cilia were validated in vitro and in vivo using quantitative PCR, and Ift20 was selected as a candidate gene in this study. The length of cilium decreased, and p-ERK level induced by a cilia defect increased in kidneys of Mxi1-deficient mice. Ciliogenesis of Mxi1-deficient mouse embryonic fibroblasts (MEFs) decreased, and this abnormality was restored by Mxi1 transfection in Mxi1-deficient MEFs. We confirmed that ciliogenesis and Ift20 expression were regulated by Mxi1 in vitro. We also determined that Mxi1 regulates Ift20 promoter activity via Ets-1 binding to the Ift20 promoter. These results indicate that inactivating Mxi1 induces ciliary defects in polycystic kidney.  相似文献   
996.
Viral pathogens utilize host cell machinery for their benefits. Herein, we identify that HIV-1 Vpr (viral protein R) negatively modulates telomerase activity. Telomerase enables stem and cancer cells to evade cell senescence by adding telomeric sequences to the ends of chromosomes. We found that Vpr inhibited telomerase activity by down-regulating TERT protein, a catalytic subunit of telomerase. As a molecular adaptor, Vpr enhanced the interaction between TERT and the VPRBP substrate receptor of the DYRK2-associated EDD-DDB1-VPRBP E3 ligase complex, resulting in increased ubiquitination of TERT. In contrast, the Vpr mutant identified in HIV-1-infected long-term nonprogressors failed to promote TERT destabilization. Our results suggest that Vpr inhibits telomerase activity by hijacking the host E3 ligase complex, and we propose the novel molecular mechanism of telomerase deregulation in possibly HIV-1 pathogenesis.  相似文献   
997.
Thrombin is a potent platelet agonist that activates platelets and other cells of the cardiovascular system by cleaving its G-protein-coupled receptors, protease-activated receptor 1 (PAR1), PAR4, or both. We now show that cleaving PAR1 and PAR4 with α-thrombin induces heterodimer formation. PAR1-PAR4 heterodimers were not detected when unstimulated; however, when the cells were stimulated with 10 nm α-thrombin, we were able to detect a strong interaction between PAR1 and PAR4 by bioluminescence resonance energy transfer. In contrast, activating the receptors without cleavage using PAR1 and PAR4 agonist peptides (TFLLRN and AYPGKF, respectively) did not enhance heterodimer formation. Preventing PAR1 or PAR4 cleavage with point mutations or hirugen also prevented the induction of heterodimers. To further characterize the PAR1-PAR4 interactions, we mapped the heterodimer interface by introducing point mutations in transmembrane helix 4 of PAR1 or PAR4 that prevented heterodimer formation. Finally, we show that mutations in PAR1 or PAR4 at the heterodimer interface prevented PAR1-assisted cleavage of PAR4. These data demonstrate that PAR1 and PAR4 require allosteric changes induced via receptor cleavage by α-thrombin to mediate heterodimer formation, and we have determined the PAR1-PAR4 heterodimer interface. Our findings show that PAR1 and PAR4 have dynamic interactions on the cell surface that should be taken into account when developing and characterizing PAR antagonists.  相似文献   
998.
We previously demonstrated that sphingosine kinase 1 (Sphk1) expression and activity are up-regulated by exogenous palmitate (PAL) in a skeletal muscle model system and in diet-induced obesity in mice; however, potential functions and in vivo relevance of this have not been addressed. Here, we aimed to determine the mechanism by which PAL regulates SphK1 in muscle, and to determine potential roles for its product, sphingosine-1-phosphate (S1P), in muscle biology in the context of obesity. Cloning and analysis of the mouse Sphk1 promoter revealed a peroxisome proliferator-activated receptor (PPAR) α cis-element that mediated activation of a reporter under control of the Sphk1 promoter; direct interaction of PPARα was demonstrated by chromatin immunoprecipitation. PAL treatment induced the proinflammatory cytokine interleukin (IL)-6 in a manner dependent on SphK1, and this was attenuated by inhibition of the sphingosine-1-phosphate receptor 3 (S1PR3). Diet-induced obesity in mice demonstrated that IL-6 expression in muscle, but not adipose tissue, increased in obesity, but this was attenuated in Sphk1−/− mice. Moreover, plasma IL-6 levels were significantly decreased in obese Sphk1−/− mice relative to obese wild type mice, and muscle, but not adipose tissue IL-6 signaling was activated. These data indicate that PPARα regulates Sphk1 expression in the context of fatty acid oversupply and links PAL to muscle IL-6 production. Moreover, this function of SphK1 in diet-induced obesity suggests a potential role for SphK1 in obesity-associated pathological outcomes.  相似文献   
999.
Ca2+ signaling is essential for bone homeostasis and skeletal development. Here, we show that the transient receptor potential canonical 1 (TRPC1) channel and the inhibitor of MyoD family, I-mfa, function antagonistically in the regulation of osteoclastogenesis. I-mfa null mice have an osteopenic phenotype characterized by increased osteoclast numbers and surface, which are normalized in mice lacking both Trpc1 and I-mfa. In vitro differentiation of pre-osteoclasts derived from I-mfa-deficient mice leads to an increased number of mature osteoclasts and higher bone resorption per osteoclast. These parameters return to normal levels in osteoclasts derived from double mutant mice. Consistently, whole cell currents activated in response to the depletion of intracellular Ca2+ stores are larger in pre-osteoclasts derived from I-mfa knock-out mice compared with currents in wild type mice and normalized in cells derived from double mutant mice, suggesting a cell-autonomous effect of I-mfa on TRPC1 in these cells. A new splice variant of TRPC1 (TRPC1ϵ) was identified in early pre-osteoclasts. Heterologous expression of TRPC1ϵ in HEK293 cells revealed that it is unique among all known TRPC1 isoforms in its ability to amplify the activity of the Ca2+ release-activated Ca2+ (CRAC) channel, mediating store-operated currents. TRPC1ϵ physically interacts with Orai1, the pore-forming subunit of the CRAC channel, and I-mfa is recruited to the TRPC1ϵ-Orai1 complex through TRPC1ϵ suppressing CRAC channel activity. We propose that the positive and negative modulation of the CRAC channel by TRPC1ϵ and I-mfa, respectively, fine-tunes the dynamic range of the CRAC channel regulating osteoclastogenesis.  相似文献   
1000.
JARID1B (also known as KDM5B or PLU1) is a member of the JARID1 family of histone lysine demethylases responsible for the demethylation of trimethylated lysine 27 in histone H3 (H3K4me3), a mark for actively transcribed genes. JARID1B is overexpressed in several cancers, including breast cancer, prostate cancer, and lung cancer. In addition, JARID1B is required for mammary tumor formation in syngeneic or xenograft mouse models. JARID1B-expressing melanoma cells are associated with increased self-renewal character. Therefore, JARID1B represents an attractive target for cancer therapy. Here we characterized JARID1B using a homogeneous luminescence-based demethylase assay. We then conducted a high throughput screen of over 15,000 small molecules to identify inhibitors of JARID1B. From this screen, we identified several known JmjC histone demethylase inhibitors, including 2,4-pyridinedicarboxylic acid and catechols. More importantly, we identified several novel inhibitors, including 2-4(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PBIT), which inhibits JARID1B with an IC50 of about 3 μm in vitro. Consistent with this, PBIT treatment inhibited removal of H3K4me3 by JARID1B in cells. Furthermore, this compound inhibited proliferation of cells expressing higher levels of JARID1B. These results suggest that this novel small molecule inhibitor is a lead compound that can be further optimized for cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号